Existence and Uniqueness of Solution for P-Laplacian Dirichlet Problem

نویسندگان

  • G. A. Afrouzi
  • S. Mahdavi
  • Z. Naghizadeh
چکیده

whereΔp is the p-Laplacian, Ω ∈ C0,1 be a bounded domain inRN . Let p ≥ 2, λ > 0 and f : Ω×R −→ R be a caratheodory function which is decreasing with respect to the second variable, i.e., f(x, s1) ≥ f(x, s2) for a.a. x ∈ Ω ands1, s2 ∈ R, s1 ≤ s2 (2) Assume, moreover, that there exists f0 ∈ Lp(Ω), p′ = p p−1 and c > 0 such that ∣f(x, s)∣ ≤ f0(x) + c∣s∣p−1 (3) We considered such problems with numerical methods in [2-5] Definition 1 We say that u ∈ W 1,p 0 (Ω) is a weak solution to (1) if ∫ ∣∇u∣p−2∇u∇v + λ ∫ ∣u(x)∣p−2u(x)v(x) = ∫ f(x, u(x)) v(x)dx for all v ∈ W 1,p 0 (Ω). Definition 2 Let H be a real Hilbert space. An operator T : H → H satisfying (T (u)− T (v), u− v) ≥ 0 (4) for any u, v ∈ H is called a monotone operator. An operator T is called strictly monotone if for u ∕= v the strict inequality holds in (4). An operator T is called strongly monotone if there exists c > 0 such that (T (u)− T (v), u− v) ≥ c ∥ u− v ∥2 for any u, v ∈ H .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

Positive solution for Dirichlet‎ ‎$‎‎p(t)‎$‎-Laplacian BVPs

In this paper we provide‎ ‎existence results for positive solution to‎ ‎Dirichlet p(t)-Laplacian boundary value problems‎. ‎The sublinear and‎ ‎superlinear cases are considerd‎.

متن کامل

Existence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic

We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

Existence of a positive solution for a p-Laplacian equation with‎ ‎singular nonlinearities

‎In this paper‎, ‎we study a class of boundary value problem‎ ‎involving the p-Laplacian oprator and singular nonlinearities‎. ‎We‎ ‎analyze the existence a critical parameter $lambda^{ast}$ such‎ ‎that the problem has least one solution for‎ ‎$lambdain(0,lambda^{ast})$ and no solution for‎ ‎$lambda>lambda^{ast}.$ We find lower bounds of critical‎ ‎parameter $lambda^{ast}$‎. ‎We use the method ...

متن کامل

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009